The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.

نویسندگان

  • P F Kantor
  • A Lucien
  • R Kozak
  • G D Lopaschuk
چکیده

Trimetazidine is a clinically effective antianginal agent that has no negative inotropic or vasodilator properties. Although it is thought to have direct cytoprotective actions on the myocardium, the mechanism(s) by which this occurs is as yet undefined. In this study, we determined what effects trimetazidine has on both fatty acid and glucose metabolism in isolated working rat hearts and on the activities of various enzymes involved in fatty acid oxidation. Hearts were perfused with Krebs-Henseleit solution containing 100 microU/mL insulin, 3% albumin, 5 mmol/L glucose, and fatty acids of different chain lengths. Both glucose and fatty acids were appropriately radiolabeled with either (3)H or (14)C for measurement of glycolysis, glucose oxidation, and fatty acid oxidation. Trimetazidine had no effect on myocardial oxygen consumption or cardiac work under any aerobic perfusion condition used. In hearts perfused with 5 mmol/L glucose and 0.4 mmol/L palmitate, trimetazidine decreased the rate of palmitate oxidation from 488+/-24 to 408+/-15 nmol x g dry weight(-1) x minute(-1) (P<0.05), whereas it increased rates of glucose oxidation from 1889+/-119 to 2378+/-166 nmol x g dry weight(-1) x minute(-1) (P<0.05). In hearts subjected to low-flow ischemia, trimetazidine resulted in a 210% increase in glucose oxidation rates. In both aerobic and ischemic hearts, glycolytic rates were unaltered by trimetazidine. The effects of trimetazidine on glucose oxidation were accompanied by a 37% increase in the active form of pyruvate dehydrogenase, the rate-limiting enzyme for glucose oxidation. No effect of trimetazidine was observed on glycolysis, glucose oxidation, fatty acid oxidation, or active pyruvate dehydrogenase when palmitate was substituted with 0.8 mmol/L octanoate or 1.6 mmol/L butyrate, suggesting that trimetazidine directly inhibits long-chain fatty acid oxidation. This reduction in fatty acid oxidation was accompanied by a significant decrease in the activity of the long-chain isoform of the last enzyme involved in fatty acid beta-oxidation, 3-ketoacyl coenzyme A (CoA) thiolase activity (IC(50) of 75 nmol/L). In contrast, concentrations of trimetazidine in excess of 10 and 100 micromol/L were needed to inhibit the medium- and short-chain forms of 3-ketoacyl CoA thiolase, respectively. Previous studies have shown that inhibition of fatty acid oxidation and stimulation of glucose oxidation can protect the ischemic heart. Therefore, our data suggest that the antianginal effects of trimetazidine may occur because of an inhibition of long-chain 3-ketoacyl CoA thiolase activity, which results in a reduction in fatty acid oxidation and a stimulation of glucose oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic mechanisms associated with antianginal therapy.

Laboratory investigations into preserving viability of the ischemic myocardium or to promote recovery during reperfusion have often focused on the intermediary pathways of energy metabolism. However, in the clinical treatment of angina, the application of metabolic therapies has generally lagged behind or has been incidental to other approaches, such as a vasodilators, calcium antagonists, and ...

متن کامل

The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.

Trimetazidine acts as an effective antianginal clinical agent by modulating cardiac energy metabolism. Recent published data support the hypothesis that trimetazidine selectively inhibits long-chain 3-ketoacyl CoA thiolase (LC 3-KAT), thereby reducing fatty acid oxidation resulting in clinical benefit. The aim of this study was to assess whether trimetazidine and ranolazine, which may also act ...

متن کامل

Modulation of metabolic changes in patients with heart failure by selective inhibition of 3-ketoacyl coenzyme A thiolase

A direct approach to manipulating cardiac energy metabolism consists of modifying substrate utilization by the heart. Pharmacological agents that directly inhibit fatty acid oxidation include inhibitors of 3-ketoacyl coenzyme A thiolase, the last enzyme involved in b-oxidation. The most extensively investigated agent of this group of drugs is trimetazidine. Clinical studies have shown that trim...

متن کامل

Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase.

High rates of fatty acid oxidation in the heart and subsequent inhibition of glucose oxidation contributes to the severity of myocardial ischemia. These adverse effects of fatty acids can be overcome by stimulating glucose oxidation, either directly or secondary to an inhibition of fatty acid oxidation. We recently demonstrated that trimetazidine stimulates glucose oxidation in the heart second...

متن کامل

Effect of selective 3-ketoacyl coenzyme A thiolase inhibition on glucose metabolism in cardiac patients

It has recently been shown that trimetazidine, a 3-ketoacyl coenzyme A thiolase inhibitor, improves overall glucose metabolism in diabetic patients with left ventricular dysfunction. Forearm glucose and lipid metabolism and forearm release of endothelial vasodilator and vasoconstrictor factors during prolonged partial inhibition of fatty acid oxidation by trimetazidine have recently been evalua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 86 5  شماره 

صفحات  -

تاریخ انتشار 2000